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Symmetry-Induced Modal Characteristics of Uniform

Waveguides – 1:Summary of Results

PAUL R. ~ [cISAAC, MEMBER, IEEE

Abstract—The application of symmetry analysis to uniform wave-

guides is discussed. Symmetry analysis provides exact information

concerning mode classification, mode degeneracy, modal electro-

magnetic-field symmetries, and the minimum waveguide sectors

which completely determine the modes in each mode class. Tables

are presented which list the possible mode classes and their de-

generacies for the two general symmetry families, C. and C.., of

uniform waveguides. Tables showing the azimuthal dependence of

the longitudinal components of the electric and magnetic fields for

each mode class are given. Based on thk azimuthal dependence,

figures showing the minimum waveguide sectors which are neces-

sary and sufficient to completely determine the modes of the various

mode classes are presented. The application of symmetry analysis

is illustrated by considering uniform waveguides with Ci and CW

symmetry.

I. INTRODUCTION

I h’RECENT YEARS the development of microwave,

millimeter, and optical devices and systems has pro-

moted interest in more complex waveguide structures. In

order to understand these structures, and to optimize

their properties for particular applications, powerful

analysis techniques are necessary. As a consequence, hlgh-

speed digital computers are now often used for the numeri-

cal analysis of such structures. However, the numerical

solution of the partial differential equations associated

with distributed structures requires extensive computer

time if moderate or high accuracy is desired. Therefore,

there is a need for analytical techniques which can supple-

ment computer calculations, providing information about

the general characteristics of a waveguide, and suggesting

possible strategies to minimize the computer time required

when particular modes are investigated. In addition,

analytical techniques are often preferable to numerical

calculations when a general understanding of the propaga-

tion characteristics of a waveguide is sought. Symmetry

analysis is one analytical technique which can provide

basic information concerning the modal characteristics

and suggest possible strategies to optimize computer

studies of particular structures.
The symmetry of a waveguide controls several of the

important characteristics of the modes of the waveguide.

A determination of the symmetry type of a particular

waveguide enables one to classify the possible modes into

mode classes, predict the mode degeneracies between

mode classes, and determine the azimuthal symmetries
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of the modal electromagnetic fields in each mode class.

Further, one can specify minimum waveguide sectors for

each mode class which completely determine the modes of

that mode class. All of this can be accomplished from a

knowledge of the waveguide symmetry without having to

solve the boundary value problem for the particular wave-

guide structure.

In this paper, attention is restricted to uniform wave-

guides which may be transversely inhomogeneous, but

whose media are isotropic and piecewise homogeneous.

This restricted class of waveguides includes most structures

of current interest, except for those waveguides containing

gyrotropic media such as ferrites (uniform waveguides

with gyrotropic media will be discussed in a future paper).

This restriction enables us to provide tables of the mode

classes, mode degeneracies, azimuthal modal field sym-

metries, and minimum waveguide sectors for any wave-

guide of this type. These waveguides may be lossy or

Iossless, and have either a closed or open boundary.

Thk discussion of the symmetry-induced modal charac-

teristics of uniform waveguides is presented in two parts:

“I: Summary of Results” and “11: Theory.” The sym-

metry analysis of waveguides is based on group theory,

and, in particular, on the theory of group representations.

However, at least for the waveguides in the restricted

class considered here, it is not necessary to have a knowl-

edge of group theory in order to apply the results of sym-

metry analysis to specific waveguides of interest. It is

only necessary to be able to identify the symmetry opera-

tions belonging to the structure under study. In order to

make these results of symmetry analysis as widely acces-

sible to microwave engineers as possible, the “Summary

of Results” is presented first, and no group theoretical’

development is included in this paper. For those interested

in how these results are obtained, the theory leading to

them is discussed briefly in the accompanying paper,

“11: Theory.”

Throughout this paper it is assumed that the w’ave-

guides under discussion are inhomogeneous. Therefore,

the waveguide modes are, in general, hybrid modes with

longitudinal components of both the electric and magne-

tic fields. Homogeneous waveguides are a special case,

and the results listed here apply to them with some obvious

simplifications in the modal field representations.

It is well known that the transverse electric and magne-

tic fields in a uniform waveguide can be expressed in

terms of the longitudinal components. For simplicity,

only the longitudinal components of the electric and mag-
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netic fields will be included in the discussion of the azi-

muthal symmetry of the modal fields. For any particular

structure the azimuthal symmetry of the transverse com-

ponents of the fields can be readily inferred from the azi-

muthal symmetry of the longitudinal components.

11. SYMMETRY OF A UNIFORM

WAVE GUIDE

Taking the waveguide axis as the z axis, a uniform wave-

guide of infinite length is invariant to translations parallel

to the z axis. For an exp (jot) time dependence, this leads

to a set of modes which vary as exp ( – YZ). Here -y is

the propagation constant which is a function of OJand, in

general, a complex number. A waveguide with a closed

boundary (opaque to electromagnetic fields) has a dis-

crete mode spectrum with an infinite number of discrete

values of y for each a. If no opaque transverse boundary

@ present, the waveguide is said to have an open bound-

ary, and for a given value of u the mode spectrum consists

of a finite number of discrete modes plus a continuous

spectrum. The discussion to follow applies to waveguides

with either type of boundary.
The solution for the modal electromagnetic fields of a

waveguide at a particular frequency entails solving an

eigenvalue problem where the eigenvalues are the values of

7(u). For any mode of a unifdrm waveguide, the transverse

electric and magnetic fields can be expressed in terms of

the longitudinal components, E. and Hz [1]. Therefore,

pairs of E. and H, form the eigenfunctions for the problem.

For a uniform waveguide the partial differential equations

and boundary conditions for E, and Hz involve only the

transverse coordinates (see the following paper, Section

II; hereafter, such references will be given as [11-11]).

As a consequence, only the symmetry of the waveguide

cross section need be considered. This restricts the relevant

waveguide symmetry types to just two general families.

A symmetry operation for a figure is a spatial operation

which leaves the figure unchanged in appearance. For a

two-dimensional figure, only two types of spatial sym-

metry operations can exist; rotations about a symmetry

axis oriented normal to the plane of the figure, and reflec-

tions in planes oriented normal to the plane of the figure.
In general, for a plane figure, if the smallest angle of

rotation which causes the pattern to appear unchanged is

2r/7z rad, then all the possible inequivalent rotational

symmetry operations of the figure are included in the set

of n operations: C., C~2,C~3,. . . ,C.n–l,C.’ = E, Here c.
denotes rotation by 2~/n rad and E denotes the identity

operation. A pattern which possesses only rotational sym-

metry (no reflection symmetry), and for which 2m/n is

the smallest angle associated with a symmetry operation,

is said to possess the symmetry group C. of order n. The

symbol C. stands for both a particular symmetry operation

and the collection of all symmetry operations based on it.

Fig. 1 shows the cross sections of several waveguides with

C. symmetry.

A plane figure may also possess reflection symmetries.

If a plane figure has n-fold rotation symmetry and also

(a) (b)

A—
(c) (d)

Fig. 1. Uniform waveguides with Cm symmetry. (a) C,. (b) C,.
(c) C,. (d) C,.

(a) (b)

(c) (d)

Fig. 2. Uniform waveguides with C., symmetry. (a)
(c) 06,. (d) Cm.

possesses at least one plane of reflection symmetry, then

there are precisely n planes of reflection symmetry. These

planes all intersect along the axis of rotational symmetry

and are spaced azimuthally at ~/n rad, The total number

of symmetry operations is n rotations plus n reflections,

or 2n symmetry operations. The symmetry group for such

a figure is designated as C.. (of order 2n). Fig. 2 shows

the cross sections of several waveguides with Cnti sym-

metry.
These two families of symmetry groups, Cn and C.,,

exhaust the possibilities for uniform inhomogeneous wave-

guides with isotropic media. Note that n may be any

integer from one to infinity. Fig. 2(d) shows an example

of a waveguide with C.. symmetry. An example of a uni-

form waveguide with C. symmetry is a sheath helix [2].

A sheath helix must be either right- or left-handed, and a

reflection transforms one helix type into the other. There-

fore, reflection is not a symmetry operation for a sheath

helix.

III. MODE CLASSIFICATION AND
DEGENERACY

Every uniform waveguide has a, mode spectrum con-

taining an infinite number of modes. However, the number

of distinct azimuthal symmetries of the modal electro-

magnetic-field patterns for a structure of a giveg sym-
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metry type, C. or C.,, k of the order of n [~1–IW.Thus
the modes of a waveguide can be assigned to classes de-

pending on the azimuthal symmetry of the modal field

patterns. These classes will be called mode classes, and

each contains an infinite number of modes.

The electromagnetic fields for all the modes in a given

mode class will have the same azimuthal symmetry, al-

though the detailed dependence of the electromagnetic

fields on the aximuthal coordinate will differ. The major

differences between the electromagnetic-field patterns for

different modes in the same mode class lie in their radial

variations. For waveguides with C. symmetry there are n

dktinct mode classes, while for waveguides with C.. sym-

metry there are either n + 1 (for n odd) or n + 2 (for

n even) distinct mode classes [II–IV].

The electromagnetic fields of a particular mode can be

labeled by a double subscript; for example, EP~ and HP~.

The first subscript, p, designates the mode class, while

the second subscript, g, distinguishes the modes withla

the pth mode class. For waveguides with Cfi symmetry,

1< p < n, wRlle for waveguides with C., symmetry,

l<?~<n-t lifnisodd,orl< p<n+2ifnis even.

In all cases of closed-boundary waveguides, g will be a

positive integer in the range from one to infinity. For the

discrete modes of an open-boundary vvaveguide, q will be

a positive integer, but usually limited to only a few possible

values. For the continuous spectrum the mode class label

p is still valid, but the second subscript q may not be use-

ful.

It can be shown [II-IV] that either all the modes in a

mode class are nondegenerate, or that all the modes in a

mode class are degenerate with the corresponchg modes

in a complementary mode class. Mode degeneracies can

occur only in pairs. For a given waveguide symmetry

group, the number of nondegenerate and degenerate mode

classes is known. Tables I and II present the mode classes

and their degeneracies for waveguides with C’. and C..

symmetry, respectively.

A comment about the possible degeneracies of a uni-

form waveguide should be made. The degeneracies cata-

loged here are those produced by the waveguide symmetry

and will occur for all values of w For some inhomogeneous

waveguides, however, the curves of -y(~) versus u for two

or more different modes may happen to cross at a parti-

cular value of co, producing a degeneracy at a discrete

frequency which is not related to the symmetry of the

waveguide. This is termed an “accidental” degeneracy,

and symmetry analysis cannot predict such isolated de-

generacies.

At thk point an alert reader may be suspicious of the

validity of Table II, because it apparently incorrectly

predicts the mode degeneracies of the most commonly

analyzed waveguides; homogeneous rectangular, square,
and circular waveguides with perfectly conducting walls.

However, symmetry analysis can correctly predict the

mode degeneracies of a waveguide only if all the symmetry

operations of the structure are accounted for. hTot all

symmetry operations involve spatial rotations and reflec-

TABLE I

TABLE OF MODE CLASSES AND MODE ‘DEGENERACIES FOR UNIFORM
WAVEGUIDES WITH Cm SYMMETRY

$-

n Number of non - Number of pairs of Total number of
degenerate mode tw -fold degenerate mode classes
classes node class es

odd 1 (n - 1)/2 n

even 2 (n - 2)/2 n

. 1 . .

TABLE 11

TABLE OF MODE CLASSES ANDNIODEDEGENERACIESFORUNIFORM
WAVEGUI~ESWITH C., SYMMETRY

—.
n Number of non - Number of pairs of Total number of

degenerate mode two -fold degenerate mode classes
classes mode classes

odd 2 (n - 1)/2 n+l

even 4 (n - 2)/2 *+2

. 2 . .

tions. These three waveguides are special in that they

include an additional [‘hidden’) symmetry which increases

the number of mode degeneracies. This “hidden” sym-

metry will be discussed in Section VI, together with a non-

spatial symmetry common to all the waveguides con-

sidered in this paper.

Here it is sufficient to state that Tables I and II apply

to all inhomogeneous waveguides of the general class con-

sidered, and to all homogeneous waveguides with the

exception of the three special cases of homogeneous rec-

tangular, square, and circular waveguides with closed

boundaries. For example, Table II correctly predicts the

mode characteristics of a homogeneous waveguide of

elliptical cross section with a perfectly conducting wall,

whose modes have been tabulated [3]. The elliptical

waveguide has the same symmetry group, CZ,, as a rec-

tangular waveguide.

IV. MODAL ELECTROMAGNETIC-FIELD

SYMMETRIES

The characteristic that ~hysically distinguishes the

mode classes of a particular waveguide is the azimuthal

symmetry of the electromagnetic fields. One way to dis-

play analytically the azimuthal symmetry of the longi-

tudinal components of the electric and magnetic fields is

to express them in terms of Fourier series in the azimuthal

angle 0. For example, it is found that the longitudinal elec-

tric- and magnetic-field components for the modes in the

only nondegenerate mode class of a waveguide with Cs

symmetry [such as that shown in Fig. 1(c)] can be written

as

H.I,(r,fO = S Blgy(r) exp (j3z@. (1)
“-w

Here, the subscripts indicate that this is the qth mode of
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TABLE III

FOURIER SERIES REPRESENTATIONS OF THE LONGITUDINAL ELECTRIC AND MAGNETIC FIELDS FOR UNIFORM WAVE-
GUIDES WITH Cm SYMMETRY

n IJode class E Ii
P zPq zPq

jnvO
even, odd 1 “~;WA1qv(,) e .~~Blqv(r) e]nve

even, odd k ~~-Akqv(r) e
j(nv+k/2)8

~- Bkqv(r) e
j(nv+k/2)0

“-

. j(nv-k/2)’d .
even, odd k+ 1

j (nv-k/2)8

“~_~A(k+l)qu(r) e “~_ B(k+l)qv (r) e

even n “~~=Anq,(r) e
jn(v -1/2)8

I- B (r) e
jn(v-1/2)8

~=.= nqv

. 1 Alq (T) B1q(T)

. k
]ke/2 jk9/2

‘kq(r) ‘
Bkq(r) e

-]ke/2
k+l.

-]k’J/2

‘(k+l)q (r) e ‘(k+l) (r) e

Note: Mode classesk,k + 1 area degenerate pair; kis even.

the first mode class. Note that inthe Fourier series, only

one-third of the possible terms that would occur in a gen-

eral Fourier series are present for this mode class. This

result for this mode class is a consequence of the symmetry

of the waveguide [II–IV]. Symmetry analysis gives no

information, however, about the magnitudes of the coeffi-

cients Ala, (r) and Blq. (r). To determine these coefficients

one must solve the partial differential equations for the

system subject to the appropriate boundary conditions.

One can conclude, however, from the Fourier series in (1)

that the electromagnetic fields for modes in this mode class

must be periodic in 0 with period 2r/3 rad. Thus, in any

numerical analysis of the nondegenerate modes of this

waveguide, all of which belong to this mode class (see

Table I), only a sector of angle 2r/3 rad need be considered

(with the boundary conditions that the electromagnetic

fields must be identical at the two azimuthal boundaries

of the sector).

Although the azimuthal symmetry of the longitudinal

electric and magnetic fields for the various mode classes
will be presented by writing these field components in

terms of Fourier series, it is not suggested that this is a

preferred form for making a detailed numerical analysis.

Other representations may well be preferable for a com-

puter study of a particular waveguide. The purpose in

using the Fourier series representation here is to be able

to extract information easily concerning the azimuthal

symmetry of the modal electromagnetic fields.
Table HI presents the general form of the Fourier series

for the longitudinal components of the electric and magne-

tic fields for waveguides with C. symmetry. Referring to

Table I, waveguides with C. symmetry will have either

one (n odd) or two (n even) mode classes containing non-

degenerate modes. It is convenient to label the mode class

containing the nondegenerate modes which occurs for n

either even or odd as the first mode class (p = 1), and

the mode class containing nondegenerate modes which

occurs only for n even as the last mode class (p = n).

The mode-class pairs which combine to give the twofold

degenerate modes are listed from p = 2 to p = n (n odd),

or to p = n — 1 (n even). Thus mode classes p = 2 and

3, 4, and 5, etc., are pairs with mutually degenerate modes.

The results for the limiting case Cm are also given; only

a single mode class with nondegenerate modes occurs in

this case. Note that Table III gives the explicit azimuthal

dependence of E. and H, for the mode classes of wave-

guides with C. symmetry.

Table IV presents the general form of the Fourier series

for the longitudinal components of the electric and magne-

tic fields for waveguides with C., symmetry. Referring

to Table II, w-aveguides with C.. symmetry have either

two (n odd) or four (n even) mode classes containing

nondegenerate modes. It is convenient to label the two

mode classes containing nondegenerate modes which occur

for n either even or odd as the first and second mode classes

(p = 1,2). The two mode classes containing nondegen-

erate modes wliich occur only for n even are placed at

the end of the list (p = n + l,n + 2). The mode-class

pairs which combine to give two fold degenerate modes are

listed from p=3top=n+l (nodd), ortop=n

(n even). The results for the limiting case C~ti are also

given; only two mode classes with nondegenerate modes

occur in this case. Again Table IV gives the explicit

azimuthal dependence for the mode classes of waveguides
with Cm, symmetry. It is important to note that the

Fourier series as written in Table IV assume that 19= O

is chosen to coincide with one of the planes of reflection

symmetry of the structure under consideration.

V. MINIMUM WAVEGUIDE SECTORS

For a given waveguide, the information presented in

Tables III and IV enables one to specify for each mode

class of the waveguide a miniumum sector of the waveguide

cross section which is sufficient, and necessary, to com-
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TABLE IV
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FOURIER SERIES REPRESENTATIONS OF THE LONGITUDINAL ELECTRIC AND MAGNETIC FIELDS FOR UNIEORM WAVE-
GUIDES WITH Cm, SYMMETRY

n Mode class E II

P zPq zPq

even, odd 1 “j}lqv (T) cos (nvE) “~jlqv(r) sin(nve)

even, odd 2
.

vLA@’(=)‘ ‘n(n”e) I“’B*qv(r) cos (rive)
“. ~

even, odd k “~~(Akqv(r) cos[(nv -(k-1)/2)0] “~~(Bkqv(r) sin[(nv -(k-1)/2)0]

+C kqv(r) cos[(nv+ (k-1) /2) E]) + Dkq”(r) sin[(nv+ (k-1)/2)01)

. .
even, odd k+ 1

&( A(k+l)qv
(r) sln[(nv-(k-1)/2)e]

“!o(g(k+l)qv
(r) cos[(nv -(k-1)/2)6]

+ C(k+l)qv
(r) sin[(nv+(k-1)/2 )0])

+ ‘(k+l)qv
(r) cos[(nv+ (k-1)/2)0])

.
even n+ 1 “~:A ~n+l) ~v (r) cOs[n(v+l/2)0]

“L. ‘(n+l)qv
(r) sin[n(v+l/Z)f3]

. .
ev’en n+ 2 & ‘(n+2)q“

(r) sin[n(v*l/2)8J
Jo ‘(n+2)qv

(r) cOs[n(v+l/2)e]

. 1 Alq (r) o

. 2 0 Bzq(r)

. k Akq(r) cos [(k-1)8/2] Bkq(T) sin[(k -1)6/2]

. k+l .4 (r) sin[(k-l)e/2]
(k+l)q ‘(k+l)q

(r) cos[(k -1)8/2]

Note: Mode classes lc,?c + 1 are a degenerate pair; k is odd.

pletely determine the modal eigenvalues and electromag-

netic fields for all of the modes of that mode class. Figs.

3 and 4 show the minimum sectors for the mode classes

of waveguides with C. and C.. symmetry, respectively. In

each case, the minimum subregion of the waveguide cross

section is a sector with the vertex of the sector angle

located at the waveguide axis. These figures give the mag-

nitude in radians of the azimuthal angle of the minimum

sector and specify the boundary conditions for the elec-

tromagnetic fields on the two straight lines bounding the

sector. It is not necessary to present figures for the two

limiting cases of waveguides with C. or Cm. symmetry,

because Tables III and IV give the explicit azimuthal

dependence of the longitudinal components of the elec-

tric and magnetic fields for the various mode classes in

these cases.

In Fig. 3 the boundary lines of the minimum waveguide

sectors are shown either as dotted lines, or as dot–dash

lines. Dotted lines indicate periodic boundary conditions;

that is, the electromagnetic fields on the two dotted lines

must be identical. Dot-dash lines indicate (‘quasi-peri-

odic’) boundary conditions; that is, the electromagnetic
fields on these two lines are identical except that the sign

of the fields along one line is reversed relative to the fields

along the other line. In Fig. 4 the boundary lines are shown

either solid or dashed. Solid lines indicate a short-circuit

boundary condition (tangential electric field is zero), and

dashed lines indicate an open-circuit boundary condition

(tangential magnetic field is zero). For waveguides with

Cm symmetry there is no particular relationship between

the boundary lines of the sectors shown in Fig. 3 and a

physical characteristic of the waveguide; that is, any sec-

tor of the specified angle could be used. In the case of

waveguides with C., symmetry, however, the boundary

lines of the minimum waveguide sectors shown in Fig. 4

must always coincide with two of the planes of reflection

symmetry of the waveguide structure.

In determining the minimum waveguide sectors of the

degenerate mode class pairs one finds that there are a

number of special cases possible, particularly as n in-

creases. Therefore, in order to fac~ltate the use of Figs.

3 and 4, Tables V and VI are presented. To use these

tables together with Figs. 3 and 4 for a particular wave-

guide, three steps should be followed.

1) Determine the symmetry type of the waveguide.

2) Determine the number of nondegenerate and de-

generate mode classes (see Tables I and II).

3) For the particular mode class of interest enter

Table V (for C. symmetry) or Table VI (for C*, sym-

metry) at the appropriate row. The various columns give

the minimum sector angles, the boundary conditions, and

refer to the relevant portions of Figs. 3 or 4.

There are several different cases possible for degenerate

mode-class pairs for waveguides with C. symmetry. In

each of these, however, the minimum waveguide sector

angle and boundary conditions are the same for both
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Fig. 4. Minimum sectors for waveguides with C.. symmetry (refer
Fig. 3. Minimum sectors for waveguides with C. symmetry (refer to Table VI). (a) Nondegenerate mode class, p = 1. (b) Nonde-

to Table V). (a) Nondegenerate mode class, p = 1. (b)–(i) De- generate mode class, p = 2. (c)–(j) Degenerate mode classes, p =
generate mode classes, p = k, k + 1. (j) Nondegenerate mode k, k + 1. (k) Nondegenerate mode class, p = n + 1., (1) Nond&
class, p = n. generate mode class, p = n + 2.

TABLE V

MINIMUM SECTORS FOR WAVEGUIDES WITH C“. SYMMETRY

n IIode class Degenerate If Degenerate f.flnimwm sector boundary Fqpre

P angle, radians conditions
k = ukt
k!~=; ~=;

even, odd 1 No

odd k, k+l Yes Yes

odd k, k+l Yes No Yes

odd k, k+l Yes No No

even k> k+l Yes Yes ; m odd

even k, k+l Yes Yes ; m even

even k, k+l Yes No Yes ; m odd

even k, k+l Yes No Yes ; In eve”

even k, k+l Yes No No

even n No

2n/n

4n/k

4n/k’

2T

4n/k

2n/k

periodic 3a

3b

3C

3d

3e

3f

periodic

periodic

periodic

periodic

quasi -
periodic

4r/k I

2n/k ‘

periodic 3’Z

3hquas I -
periodic

3iV quasi -
periodic

quasi -
periodic

2n/n

mode classes of the pair k and k + 1. The cases are dis-

tinguished by whether k/2 is an integer divisor of n (k/2 =

n/m, with m < n), an integer multiple of an integer divisor

of n (k = uk’, k’/2 = n/m, with m < n), or neither.

The various possibilities, and their consequences, are dis-

played in Table V and Fig. 3. In those cases where k = uk’

with k’/2 = n/m, and there is a choice of several possible

values of k’, one should always select the largest of the

possible values of k’ (smallest possible value of m).

There are also several different cases possible for de-

generate mode-class pairs for waveguides with C%. sym-

metry. The cases are distinguished by whether (k – 1)/2

is an integer divisor of n ((k — 1)/2 = n/m, with m < n),

an integer multiple of an integer divisor of n ((k – 1) =

u(k’ — 1), (k’ — 1)/2 = n/m, with m < n), or neither.

The various possibilities, and their consequences, are

displayed in Table VI and Fig. 4. In those cases where

(k – 1) = u k’ – 1) with (k’ – 1)/2 = n/m, and there
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TABLE VI

MINIMUM SECTORS FOR WAVEGUIDES WITH c~% SYMMETRY

n Mode class Degenerate If Degenerate !4inimun sector Boundary Figure

P angle, rmlians conditions
k-1 = u(k’ -l)

k-1. n %=E
T-ii m

even, odd

even, odd

odd

0 M

odd

even

even

even
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is a choice of several possible values of k’, one should

always select the largest of the possible values of k’

(smallest possible value of m).
iVote that while the minimum waveguide-sector angle is

the same for both mode classes of a degenerate pair, the

boundary conditions are different for each mode class of

the pair. This result for the degenerate mode classes of

waveguides with Cm, symetry contrasts with that for

waveguides with C. symmetry, where both mode classes of

a degenerate pair have the same sector boundary condi-

tions. Thus, in the case of waveguides with C., symmetry,

the use of the minimum waveguide sector for analyzing

the modes in a degenerate mode class leads to an important

benefit in addition to minimizing the waveguide area that

is necessary to be included in the analysis. By using the

minimum waveguide sector with its appropriate boundary

conditions, the degeneracy of the modes is lifted; there-

fore, in any numerical calculations each mode can be

treated as a nondegenerate mode.

Two examples will be examined briefly to illustrate the

application of symmetry analysis to specific structures.

First, consider the hollow conducting pipe of square cross

section with four dielectric slabs located so as to produce

a structure with Cl symmetry, Fig. 5(a). From Table I,

this waveguide has a total of four mode classes. Mode

classes 1 and 4 have nondegenerate modes, while mode

classes 2 and 3 form a pair with mutually degenerate modes.

Using Table V and Fig. 3, one finds that the minimum

waveguide sectors which are necessary and sufficient to

determine the modal electromagnetic fields are those

shown in Fig. 5. Fig. 5(b) and 5(d) show the minimum

sectors for mode classes 1 and 4, respectively, while Fig.

5(c) shows the minimum sector for the pair of degenerate

(a)

:7........
(b)

(c) (d)

Fig. 5. Minimum waveguide sectors for a waveguide with Cl sym-
metry. (a) Waveguide with Cl symmetry. (b) First mode class
(nondegenerate). (c) Second and third mode classes (degenerate
pair). (d) Fourth mode class (nondegenerate). Dotted lines in-
dicate periodic boundary conditions; dot–dash lines indicate quasi-
periodic boundary conditions.

mode classes (2 and 3). The particular sectors shown are

not unique; other sectors with the same angle and bound-

ary conditions could have been chosen instead.

The open-boundary waveguide of Fig. 6(a) has seven

dielectric rods (or fibers) of equal diameter arranged in

a close-packed structure with CIjv symmetry. From Table

11, this waveguide has a total of eight mode classes. Mode

classes 1, 2, 7, and S are nondegenerate, while mode

classes 3 and 4, 5 and 6, are two pairs, with each pair

having mutually degenerate modes. Using Table VI

and Fig. 4, one finds that the minimum sectors which are

necessary and sufficient to determine the modal electro-

magnetic fields of these mode classes are those shown in

Fig. 6. Fig. 6(b), (c), (f), and (g) show the minimum sec-
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Fig. 6. Minimum waveguide sectors for a waveguide with C6V
symmetry. (a) Waveguide with (76. symmetry. (b) First mode
class (nondegenerate). (c) Second mode class (nondegenerate).
(d) Third and fourth mode classes (degenerate pair). (e) Fifth and
sixth mode classes (degenerate pair). (f) Seventh mode class (non-
degenerate). (g) Eighth mode class (nondegenerate). Solid lines
indicate short-circuit boundary conditions; dashed lines indicate
open-circuit boundary conditions.

tors for mode classes 1,2,7, and 8, respectively. Fig. 6 (d)

shows the minimum sectors for the mode class pair 3 and

4, and Fig. 6(e) for the mode class pair 5 and 6.

VI. NONSPATIAL SYMMETRY

In Section III there was a brief reference to nonspatial

symmetries which may influence the modal characteristics

of a waveguide. An important example of such a non-

spatial symmetry for waveguides is “frequency-reversal”

symmetry [II–V]. This symmetry is a consequence of the

requirement that E* ( –u) = ~(u) and p* ( –o) = ~(co)

for real CO.This additional symmetry operation has no

effect on the modal characteristics of waveguides with

C%. symmetry. However, this symmetry operation does

play an important role in the modal characteristics of

waveguides with C. symmetry. Without the inclusion of

this symmetry operation, all of the mode classes of wave-

guides with C. symmetry would be nondegenerate; the
occurrence of degenerate pairs of mode classes for these

waveguides depends on the presence of the frequency-

reversal symmetry operation. All of the results given for

waveguides with Cm symmetry in the previous sections in-

clude its influence.

A second example of a nonspatial symmetry is one

which occurs only for homogeneous waveguides with per-

fectly conducting boundaries which are either square,

rectangular, or circular (see Section III). In this case the

additional symmetry depends on the special geometry of

these waveguides (note that homogeneous waveguides

with rectangular and elliptical boundaries belong to the

same symmetry group, Cz,, but their geometries are dif-

ferent ). For homogeneous waveguides with square or

rectangular walls, the transverse dependence of the axial

electric field for the E modes can be written as the product

of two trigonometric functions; for example,

E= (z,v) = Am. sin (nzmr/a) sin (rmy/b)

with m,n > 1, if the waveguide width and height are a

and b, respectively. By applying the differential operator

a/c?x d/dy to this field, one obtains a function B~~
cos (mrx/a) cos (n~y/b), which is characteristic of the

axial magnetic field of the H modes of the waveguide.

This operator reflects a geometric symmetry of these wave-

guides which produces degeneracies between the E and H
modes in addition to those tabulated in Table II. A

similar geometry-induced symmetry occurs for homo-

geneous waveguides with perfectly conducting circular

walls. In this case, additional degeneracies are produced

between the Eln and HO. modes; this result applies to

hollow circular waveguides and coaxial circular wave-

guides.

It is believed that these three cases of homogeneous

waveguides with square, rectangular, or circular walls

which are perfectly conducting, are the only ones of prac-

tical interest which show additional geometry-induced

mode degeneracies. Homogeneous waveguides with per-

fectly conducting walls whose cross sections are other than

square, rectangular, or circular will not show geometry-

induced mode degeneracies, nor will any inhomogeneous

waveguide, regardless of the boundary geometry. Since

the modal characteristics of homogeneous waveguides with

square, rectangular, and circular walls are well established

and discussed in many textbooks, there is no point in

applying the symmetry analysis described in this paper

to such waveguides. Therefore, their exclusion here is not

a significant restriction on this symmetry analysis.

VII. DISCUSSION

Symmetry analysis provides exact information concern-

ing the following characteristics of the modes of uniform

waveguides: the classification of the modes into mode

classes; the possible degeneracies of the modes; the azi-

muthal symmetries of the modal electromagnetic fields

for each mode class; and the minimum waveguide sectors

which are necessary and suilicient to completely determine

the modes in each mode class. The results obtained here

are applicable to waveguides which may be transversely

inhomogeneous, but whose media are isotropic and piece-

wise homogeneous. The waveguide may be Iossy or loss-

less and have either an open or closed boundary. Because

all of the uniform waveguides considered in this paper are

included in the two general symmetry families, C. and

cn., it has been possible to tabulate the results for all

possible cases.

It should be clear that symmetry analysis cannot pro-

vide complete information concerning all of the modal

characteristics of uniform waveguides. For example, it

can provide no direct information concerning the ordering

of the waveguide modes based on the cutoff frequencies.

In addition, the results are exact. That means, for example,

that symmetry analysis states that modes are either non-

degenerate or are degenerate. It cannot indicate when

modes are “almost” degenerate.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-23, NO. 5, MAY 1975 429

In order to exploit symmetry analysis, fully, one must how the degeneracies of modes are split when the sym-

use ‘fcommon sense” in applying it to particular struc- metryis ‘[lowered;” this would require some knowledge of

tures. For example, suppose the waveguide under con- group representation theory and is not considered here.

sideration has a particular symmetry type, but its cross
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Symmetry-Induced Modal Characteristics of Uniform

Waveguides – II: Theory

PAUL R. McISAAC, MEMBl?JR, IEEE

Abstract—The application of symmetry analysis to uniform wave-
guides is discussed. Symmetry analysis provides exact information
concerning mode classification, mode degeneracy, modal electro-
magnetic-field symmetries, and the minimum waveguide sectors
which completely deterrnhe the modes in each mode class. This
paper provides a summary of the development. that leads to the re-
sults concerning symmetry-induced modal characteristics of uni-
form waveguides discussed in the previous paper. Some of the con-

cepts of group theory are introduced, includhg the irreducible repre-

sentations of symmetry groups. The use of the irreducible repre-

seritations to determine the mode classes and their degeneracies is

described. The projection operators belonging to the irreducible

representations are introduced and their application to determining

tie azimuthal symmetry of the modal fields is explained. The mini-

mum wave~de sectors for the mode classes are obtained from the

azimuthal symmetry of the modal fields.

I. INTRODUCTION

THE PURPOSE of this paper is to provide a summary of

the development that leads to the results concerning

the symmetry-induced modal characteristics of uniform

waveguides discussed in the previous paper. These results

are based on group theory and, in particular, on the theory

of group representations. There have been many applica-

tions of group theory to various branches of physics and
chemistry, and the literature describing these applications
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is copious. However, there have been few applications of

group theory to the field of microwaves. One exception is

symmetrical waveguide junctions which have been investi-

gated by Montgomery et al. [1], Kerns [2], and Auld [3].

A few papers have been published which explored the con-

sequences of symmetry in periodic waveguides. Two recent

publications are [4] and [5]; the second paper employs

group-theoretic methods. There has been little attention

given, however, to exploiting the role symmetry plays in

determining the modal characteristics of uniform wave-

guides.

A coherent exposition of the development of the com-

plete theory required for the symmetry analysis of uniform

waveguides starting from the basic concepts of group

theory is not feasible in the few pages appropriate to a

journal paper, and this is not attempted here. Instead,

the relevant results from group theory will be cited, and

a ,brief indication given how these lead to the results pre-

sented for uniform waveguides in the previous piper

(hereafter referred to as [1]). This paper is not intended to

enable a reader unfamiliar with group theory to attain a

working knowledge of it as a technique for application to
microwave analysis. However, it is hoped that these

papers may provide a glimpse of the power of this techni-

que and motivate some readers to explore it. Three of the

many excellent books on the application of group theory

to various branches of physics and chemistry are [6]-[8].

To provide the maximum assistance to any interested


