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Symmetry-Induced Modal Characteristics of Uniform
Waveguides — I: Summary of Results

PAUL R. McISAAC, MEMBER, IEEE

Abstract—The application of symmetry analysis to uniform wave-
guides is discussed. Symmetry analysis provides exact information
concerning mode classification, mode degeneracy, modal electro-
magnetic-field symmetries, and the minimum waveguide sectors
which completely determine the modes in each mode class. Tables
are presented which list the possible mode classes and their de-
generacies for the two general symmetry families, C, and C,, of
uniform waveguides. Tables showing the azimuthal dependence of
the longitudinal components of the electric and magnetic fields for
each mode class are given. Based on this azimuthal dependence,
figures showing the minimum waveguide sectors which are neces-
sary and sufficient to completely determine the modes of the various
mode classes are presented. The application of symmetry analysis
is illustrated by considering uniform waveguides with C, and Ci,
symmetry.

I. INTRODUCTION

N RECENT YEARS the development of microwave,

millimeter, and optical devices and systems has pro-
moted interest in more complex waveguide structures. In
order to understand these structures, and to optimize
their properties for particular applications, powerful
analysis techniques are necessary. As a consequence, high-
speed digital computers are now often used for the numeri-
cal analysis of such structures. However, the numerical
solution of the partial differential equations associated
with distributed structures requires extensive computer
time if moderate or high accuracy is desired. Therefore,
there is a need for analytical techniques which ean supple-
ment computer caleulations, providing information about
the general characteristics of a waveguide, and suggesting
possible strategies to minimize the computer time required
when particular modes are investigated. In addition,
analytical techniques are often preferable to numerical
calculations when a general understanding of the propaga-
tion characteristics of a waveguide is sought. Symmetry
analysis is one analytical technique which can provide
. basic information concerning the modal characteristics
and suggest possible strategies to optimize computer
studies of particular structures.

The symmetry of a waveguide controls several of the
important characteristics of the modes of the waveguide.
A determination of the symmetry type of a particular
waveguide enables one to classify the possible modes into
mode classes, predict the mode degeneracies between
mode classes, and determine the azimuthal symmetries
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of the modal electromagnetic fields in each mode class.
Further, one can specify minimum waveguide sectors for
each mode class which completely determine the modes of
that mode class. All of this can be accomplished from a
knowledge of the waveguide symmetry without having to
solve the boundary value problem for the particular wave-
guide structure.

In this paper, attention is restricted to uniform wave-
guides which may be transversely inhomogeneous, but
whose media are isotropic and piecewise homogeneous.
This restricted class of waveguides includes most structures
of current interest, except for those waveguides containing
gyrotropic media such as ferrites (uniform waveguides
with gyrotropic media will be discussed in a future paper).
This restriction enables us to provide tables of the mode
clagsses, mode degeneracies, azimuthal modal field sym-
metries, and minimum waveguide sectors for any wave-
guide of this type. These waveguides may be lossy or
lossless, and have either a closed or open boundary.

This discussion of the symmetry-induced modal charac-
teristics of uniform waveguides is presented in two parts:
“T. Summary of Results” and “II: Theory.” The sym-
metry analysis of waveguides is based on group theory,
and, in particular, on the theory of group representations.
However, at least for the waveguides in the restricted
class considered here, it is not necessary to have a knowl-
edge of group theory in order to apply the results of sym-
metry analysis to specific waveguides of interest. It is
only necessary to be able to identify the symmetry opera-
tions belonging to the structure under study. In order to
make these results of symmetry analysis as widely acces-
sible to microwave engineers as possible, the “Summary
of Results” is presented first, and no group theoretical’
development is included in this paper. For those interested
in how these results are obtained, the theory leading to
them is discussed briefly in the accompanying paper,
“II: Theory.”

Throughout this paper it is assumed that the wave-
guides under discussion are inhomogeneous. Therefore,
the waveguide modes are, in general, hybrid modes with
longitudinal components of both the electric and magne-
tic fields. Homogeneous waveguides are a special case,
and the results listed here apply to them with some obvious
simplifications in the modal field representations.

It is well known that the transverse electric and magne-
tic fields in a uniform waveguide can be expressed in
terms of the longitudinal components. For simplicity,
only the longitudinal components of the electric and mag-
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netic fields will be included in the discussion of the azi-
muthal symmetry of the modal fields. For any particular
structure the azimuthal symmetry of the transverse com-
ponents of the fields can be readily inferred from the azi-
muthal symmetry of the longitudinal components.

II. SYMMETRY OF A UNIFORM
WAVEGUIDE

Taking the waveguide axis as the z axis, a uniform wave-
guide of infinite length is invariant to translations parallel
to the 2 axis. For an exp (jwt) time dependence, this leads
to a set of modes which vary as exp (—vz). Here v is
the propagation constant which is a function of « and, in
general, a complex number. A waveguide with a closed
boundary (opaque to electromagnetic fields) has a dis-
erete mode spectrum with an infinite number of diserete
values of v for each w. If no opaque transverse boundary
is present, the waveguide is said to have an open bound-
ary, and for a given value of » the mode spectrum consists
of a finite number of discrete modes plus a continuous
spectrum. The discussion to follow applies to waveguides
with either type of boundary. ‘

The solution for the modal electromagnetic fields of a
waveguide at a particular frequency entails solving an
eigenvalue problem where the eigenvalues are the values of
v (w) . For any mode of a uniférm waveguide, the transverse
electric and magnetic fields ecan be expressed in terms of
the longitudinal ecomponents, E, and H, [1]. Therefore,
pairs of £, and H, form the eigenfunctions for the problem.
For a uniform waveguide the partial differential equations
and boundary conditions for F, and H, involve only the
transverse coordinates (see the following paper, Section
II; hereafter, such references will be given as [II-1I7]).
As a consequence, only the symmetry of the waveguide
cross section need be considered. This restricts the relevant
waveguide symmetry types to just two general families.

A symmetry operation for a figure is a spatial operation
which leaves the figure unchanged in appearance. For a
two-dimensional figure, only two types of spatial sym-
metry operations can exist; rotations about a symmetry
axis oriented normal to the plane of the figure, and reflec-
tions in planes oriented normal to the plane of the figure.

In general, for a plane figure, if the smallest angle of
rotation which causes the pattern to appear unchanged is
2n/n rad, then all the possible inequivalent rotational
symmetry operations of the figure are included in the set
of n operations: C,,C,%C:3 -+ +,C,»,0» = E. Here C,
denotes rotation by 2x/n rad and E denotes the identity
operation. A pattern which possesses only rotational sym-
metry (no reflection symmetry), and for which 2x/n is
the smallest angle associated with a symmetry operation,
is said to possess the symmetry group C, of order n. The
symbol C, stands for both a particular symmetry operation
and the collection of all symmetry operations based on it.
Fig. 1 shows the cross sections of several waveguides with
C, symmetry.

A plane figure may also possess reflection symmetries.
If a plane figure has n-fold rotation symmetry and also
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possesses at least one plane of reflection symmetry, then
there are precisely » planes of reflection symmetry. These
planes all intersect along the axis of rotational symmetry
and are spaced azimuthally at »/n rad. The total number
of symmetry operations is n rotations plus n reflections,
or 2n symmetry operations. The symmetry group for such
a figure is designated as C,, (of order 2n). Fig. 2 shows
the cross sections of several waveguides with C,, sym-
metry.

These two families of symmetry groups, C, and C,.,
exhaust the possibilities for uniform inhomogencous wave-
guides with isotropic media. Note that n may be any
integer from one to infinity. Fig. 2(d) shows an example
of a waveguide with (', symmetry. An example of a uni-
form waveguide with C,, symmetry is a sheath helix [2].
A sheath helix must be either right~ or left-handed, and a
reflection transforms one helix type into the other. There-
fore, reflection is not a symmetry operation for a sheath
helix.

III. MODE CLASSIFICATION AND
DEGENERACY

Every uniform waveguide has a mode spectrum con-
taining an infinite number of modes. However, the number
of distinet azimuthal symmetries of the modal electro-
magnetic-field patterns for a structure of a given sym-
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metry type, Cn or Cyy, is of the order of n [II-IV]. Thus
the modes of a waveguide can be assigned to classes de-
pending on the azimuthal symmetry of the modal field
patterns. These classes will be called mode classes, and
each contains an infinite number of modes.

The electromagnetic fields for all the modes in a given
mode class will have the same azimuthal symmetry, al-
though the detailed dependence of the electromagnetic
fields on the aximuthal coordinate will differ. The major
differences between the electromagnetic-field patterns for
different modes in the same mode class lie in their radial
variations. For waveguides with C, symmetry there are n
distinet mode classes, while for waveguides with Cr, sym-
metry there are either n + 1 (for n odd) or n + 2 (for
n even) distinet mode classes [II-1V].

The electromagnetic fields of a particular mode can be
labeled by a double subscript; for example, E,, and Hy,.
The first subseript, p, designates the mode class, while
the second subscript, ¢, distinguishes the modes within
the pth mode class. For waveguides with C, symmetry,
1 < p <, while for waveguides with C,. symmetry,
1<p<n+lifnisodd,orl <p < n+ 2if nis even.
In all cases of closed-boundary waveguides, ¢ will be a
positive integer in the range from one to infinity. For the
discrete modes of an open-boundary waveguide, ¢ will be
a positive integer, but usually limited to only a few possible
values. For the continuous spectrum the mode class label
p is still valid, but the second subseript ¢ may not be use-
ful.

It can be shown [II-IV7] that either all the modes in a
mode class are nondegenerate, or that all the modes in a
mode class are degenerate with the corresponding modes
in a complementary mode class. Mode degeneracies can
occur only in pairs. For a given waveguide symmetry
group, the number of nondegenerate and degenerate mode
classes is known. Tables I and II present the mode classes
and their degeneracies for waveguides with C, and Ch,
symmetry, respectively.

A comment about the possible degeneracies of a uni-
form waveguide should be made. The degeneracies cata~
loged here are those produced by the waveguide symretry
and will occur for all values of w. For some inhomogeneous
waveguides, however, the curves of v (w) versus w for two
or more different modes may happen to cross at a parti-
cular value of w, producing a degeneracy at a discrete
frequency which is not related to the symmetry of the
waveguide. This is termed an “accidental” degeneracy,
and symmetry analysis cannot predict such isolated de-
generacies.

At this point an alert reader may be suspicious of the
validity of Table II, because it apparently incorrectly
predicts the mode degeneracies of the most commonly
analyzed waveguides; homogeneous rectangular, square,
and circular waveguides with perfectly conducting walls.
However, symmetry analysis can correctly predict the
mode degeneracies of a waveguide only if all the symmetry
operations of the structure are accounted for. Not all
symrmetry operations involve spatial rotations and reflec-
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TABLE I

TasrLe ofF MopE CLassEs AND MobE DEGENERACIES FOR UNIFORM
WaveGUuipEs WITH C,, SYMMETRY

Total number of

Number of pairs of
mode classes

two -fold degenerate
mode classes

n Number of non-
degenerate mode
classes

odd 1 (n - 1)/2 n

even 2 (n -2)/2 n

@ 1 © ©
TABLE II

TaBiLe or Mopog CrLassEs aAND MopeE DrgeNERACIES FOR UNIFORM
WaveguIipEs WITH C,y SYMMETRY

Total number of

Number of pairs of
mode classes

two-fold degenerate
mode classes

-1)/2
- 2)/2

n Number of non-
degenerate mode
classes

odd 4 (n n+1

even 4 (n n + 2

« 2 ™ ™

tions. These three waveguides are special in that they
include an additional “hidden” symmetry which increases
the number of mode degeneracies. This “hidden” sym-
metry will be discussed in Section VI, together with a non-
spatial symmetry common to all the waveguides con-
sidered in this paper.

Here it is sufficient to state that Tables I and IT apply
to all inhomogeneous waveguides of the general class con-
sidered, and to all homogeneous waveguides with the
exception of the three special cases of homogeneous rec-
tangular, square, and circular waveguides with closed
boundaries. For example, Table II correctly predicts the
mode characteristics of a homogeneous waveguide of
elliptical cross section with a perfectly conducting wall,
whose modes have been tabulated [3]. The elliptical
waveguide has the same symmetry group, Cs,, as a rec-
tangular waveguide.

IV. MODAL ELECTROMAGNETIC-FIELD
SYMMETRIES

The characteristic that physically distinguishes the
mode classes of a particular waveguide is the azimuthal
symmetry of the electromagnetic fields. One way to dis-
play analytically the azimuthal symmetry of the longi-
tudinal components of the eleetric and magnetic fields is
to express them in terms of Fourier series in the azimuthal
angle 8. For example, it is found that the longitudinal elec-
tric- and magnetic-field components for the modes in the
only nondegenerate mode class of a waveguide with C;
symmetry [such as that shown in Fig. 1(c) ] can be written
as

Z Alqv(?) €xp (]3V0)

y=—uw0

Eopy(r,8)

S Bip(r) exp (j348). (1)

pem— 00

Here, the subscripts indicate that this is the ¢th mode of

Hﬂq (7’)0) =
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TABLE III

FourIErR SERIES REPRESENTATIONS OF THE LoONGITUDINAL ELEcTRIC sND MaeNETIC FIBLDS FOR UNIFORM WAVE-
GUIDES WITH C, SYMMETRY

n Mode class E H
P Zpq zpq
« jnve o jnve
even, odd 1 A (r) e B T
\,Z.w 1qv vZ‘, lqv( )e
© j{nv+k/2)e © J(nv+k/2)8
even, odd k A T) e B ) e
L™ I ™
@ j(nv-k/2)e w j(nv-k/2)6
even, odd k+1 A
L Meng e WL Baeng® e
© jn(v-1/2}s8 © jn(v-1/2})e8
even n T A (m) e B (r
Ve~ DAY V= e TGV
@ 1 A (7) B T
1q lq( }
X A 1ke/2 jke/2
kq(r) e qu(r) e
-1k6/2 -3k8/2
© k+1 (r) e

Alke1yq

B(k+1)(r) e

Note: Mode classes k,k -+ 1 are a degenerate pair; k is even.

the first mode class. Note that in the Fourier series, only
one-third of the possible terms that would occur in a gen-
eral Fourier series are present for this mode class. This
result for this mode class is a consequence of the symmetry
of the waveguide [TI-IV]. Symmetry analysis gives no
information, however, about the magnitudes of the coeffi-
cients A14,(r) and By (r). To determine these coefficients
one must solve the partial differential equations for the
system subject to the appropriate boundary conditions.
One can conclude, however, from the Fourier series in (1)
that the electromagnetic fields for modes in this mode class
must be periodic in 6 with period 27/3 rad. Thus, in any
numerical analysis of the nondegenerate modes of this
waveguide, all of which belong to this mode class (see
Table I), only a sector of angle 27 /3 rad need be considered
(with the boundary conditions that the electromagnetic
fields must be identical at the two azimuthal boundaries
of the sector).

Although the azimuthal symmetry of the longitudinal
electric and magnetic fields for the various mode classes
will be presented by writing these field components in
terms of Fourier series, it is not suggested that this is a
preferred form for making a detailed numerical analysis.
Other representations may well be preferable for a com-
puter study of a particular waveguide. The purpose in
using the Fourier series representation here is to be able
to extract information easily concerning the azimuthal
symmetry of the modal electromagnetic fields.

Table III presents the general form of the Fourier series
for the longitudinal components of the electric and magne-
tic fields for waveguides with C, symmetry. Referring to
Table I, waveguides with C, symmetry will have either
one (n odd) or two (n even) mode classes containing non-
degenerate modes. It is convenient to label the mode class
containing the nondegenerate modes which occurs for n
either even or odd as the first mode class (p = 1), and
the mode class containing nondegenerate modes which

occurs only for n even as the last mode class (p = n).
The mode-class pairs which combine to give the twofold
degenerate modes are listed from p = 2 to p = n (n odd),
ortop = n — 1 (n even). Thus mode classes p = 2 and
3, 4, and 5, ete., are pairs with mutually degenerate modes.
The results for the limiting case C, are also given; only
a single mode class with nondegenerate modes occurs in
this case. Note that Table III gives the explicit azimuthal
dependence of £, and H, for the mode classes of wave-
guides with C,, symmetry.

Table IV presents the general form of the Fourier series
for the longitudinal components of the electric and magne-
tic fields for waveguides with C,, symmetry. Referring
to Table II, waveguides with C,, symmetry have either
two (n odd) or four (n even) mode classes containing
nondegenerate modes. It is convenient to label the two
mode classes containing nondegenerate modes which occur
for n either even or odd as the first and second mode classes
(p = 1,2). The two mode classes containing nondegen-
erate modes which occur only for n even are placed at
the end of the list (p = n + 1,n + 2). The mode-class
pairs which combine to give two fold degenerate modes are
listed from p =3 to p=n+1 (n odd), or to p =n
(n even). The results for the limiting case C,, are also
given; only two mode classes with nondegenerate modes
occur in this case. Again Table IV gives the explicit
azimuthal dependence for the mode classes of waveguides
with C,, symmetry. It is important to note that the
Fourier series as written in Table IV assume that § = 0
is chosen to coincide with one of the planes of reflection
symmetry of the structure under consideration.

V. MINIMUM WAVEGUIDE SECTORS

For a given waveguide, the information presented in
Tables III and IV enables one to specify for each mode
class of the waveguide a miniumum sector of the waveguide
cross section which is sufficient, and necessary, to com-
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TABLE IV

FouriEr SERIES REPRESENTATIONS OF THE LONGITUDINAL ErEcTRIC AND MAGNETIC FIELDS FOR UNIFORM WAVE-~
gUIDES WITH (), SYMMETRY

I
n Modepclass Ezpq 2pq
even, odd 1 vEoAlqv(r) cos (nve) vZoqu“(r) sin(nve)
2 WA 0 QB ]
even, odd vzo qu(r) sin(nve) uZo 2qv(r) cos (nve)
even, odd k Zm[A (r) cos[(nv-(k-1)/2)e] ZQ[B (r) sin[(nv-(k-1)/2)6]
veo  kqv veo  Kav
+ qu\,(") cos [ (nv+(k-1)/2)81) + Dkqv(r) sinf(nv+(k-1)/2)6])
even, odd k+1 \,ZO[A(k*l)qv(r) sinf(nv-(k-1)/2)8] \,ZQ(B(k*l)q\)(r) cos[(nv-(k-1)/2)98)
* Clrenyqu® sin[(nv+(k-1)/2)8]) * D a1y gy cos [(nv+ (k-1)/2)e])
even n+l v=: A(n+1)qv(r) cos [n(v+1/2)6] vgo B(n+1)qv(r) sin{n(v+1/2)8]
even n+2 vZO A(n+2)qv(r) sin[n(v+1/2)0] vzo B(n*Z)qV(r) cos{n(v+1/2)6]
g 1
Alq(r) 0
m 2 0 B
2q(r)
© k Akq(r) cos [(k-1)6/2] By (¥) sinl(k-1)6/2]
@ k+1 (r) sin{[(k-1)8/2] (r) cos[(k-1)6/2]

A
(k+1)q

B
(k+1)q

Note: Mode classes k,k + 1 are a degenerate pair; k is odd.

pletely determine the modal eigenvalues and electromag-
netic fields for all of the modes of that mode class. Figs.
3 and 4 show the minimum sectors for the mode classes
of waveguides with C, and C,, symmetry, respectively. In
each case, the minimum subregion of the waveguide cross
section is a sector with the vertex of the sector angle
located at the waveguide axis. These figures give the mag-
nitude in radians of the azimuthal angle of the minimum
sector and specify the boundary conditions for the elec-
tromagnetic fields on the two straight lines bounding the
seetor. It is not necessary to present figures for the two
limiting cases of waveguides with C, or C,, symmetry,
because Tables III and IV give the explicit azimuthal
dependence of the longitudinal components of the elec-
tric and magnetic fields for the various mode classes in
these cases.

In Fig. 3 the boundary lines of the minimum waveguide
sectors are shown either as dotted lines, or as dot—dash
lines. Dotted lines indicate periodic boundary conditions;
that is, the electromagnetic fields on the two dotted lines
must be identical. Dot-dash lines indicate ‘“quasi-peri-
odic” boundary conditions; that is, the electromagnetic
fields on these two lines are identical except that the sign
of the fields along one line is reversed relative to the fields
along the other line. In Fig. 4 the boundary lines are shown
either solid or dashed. Solid lines indicate a short-circuit
boundary condition (tangential electric field is zero), and
dashed lines indicate an open-circuit boundary condition

(tangential magnetic field is zero). For waveguides with
C, symmetry there is no particular relationship between
the boundary lines of the sectors shown in Fig. 3 and a
physical characteristic of the waveguide; that is, any sec-
tor of the specified angle could be used. In the case of
waveguides with C,, symmetry, however, the boundary
lines of the minimum waveguide sectors shown in Fig. 4
must always coincide with two of the planes of reflection
symmetry of the waveguide structure.

In determining the minimum waveguide sectors of the
degenerate mode class pairs one finds that there are a
number of special cases possible, particularly as n in-
creases. Therefore, in order to facilitate the use of Figs.
3 and 4, Tables V and VI are presented. To use these
tables together with Figs. 3 and 4 for a particular wave-
guide, three steps should be followed.

1) Determine the symmetry type of the waveguide.

2) Determine the number of nondegenerate and de-
generate mode classes (see Tables I and II).

3) For the particular mode class of interest enter
Table V (for C, symmetry) or Table VI (for C,, sym-
metry) at the appropriate row. The various columns give
the minimum sector angles, the boundary conditions, and
refer to the relevant portions of Figs. 3 or 4.

There are several different cases possible for degenerate
mode-class pairs for waveguides with C, symmetry. In
each of these, however, the minimum waveguide sector
angle and boundary conditions are the same for both



426

2iT/n
@ (b)
’ 2T
. \\4"{ N
(e) GV
. /
’\ aTT/k /\ 2TT/k

(e ®
/ ‘\a ™K
(2) (h)
/ '\ 2T/n
® ’ )]
Fig. 3. Minimum sectors for waveguides with C, symmetry (vefer
to Table V). (a) Nondegenerate mode class, p = 1. (b)—({) De-

generate mode classes, p =k, k 4+ 1. (j) Nondegenerate mode
class, p = n.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MAY 1975

/
// i
/\ T/n /n

(a) (b)

// // )
21T/k- 1) 2TT/(k' -1
P A A i
(c) (d)

oo sy

(e )
/ /
T/(k-1) / 27N
4 A A
LN A

(e) (b)

/
i - 1) < [ T2

@ 6]

/G/n

(&)

>

//
/,"\\TT/n
o

Fig. 4. Minimum sectors for waveguides with C.,, symmetry (refer

to Table VI). (a) Nondegenerate mode class, p = 1. (b) Nonde-
generate mode class, p = 2. (¢)-(j) Degenerate mode classes, p =
k, & 4+ 1. (k) Nondegenerate mode class, p = n + 1., (1) Nonde-
generate mode class, p = n 4 2.

TABLE V
MiniMUM SECTORS FOR WAVEGUIDES WITH '\, SYMMETRY
n Mode class Degenerate If Degenerate Minimum sector Boundary Figure
P angle, radians conditions
k = uk'
=1 k',
7 m 7

even, odd 1 No 21/n periodic 3a
odd k, k+1 Yes Yes 4n/k periodic 3b
odd k, k+1 Yes No Yes 4n/k? periodic 3c
odd k, k+1 Yes No No 2T periodic 3d
even k, k+1 Yes Yes; m odd 4n/k periodic 3e
even k, k+1 Yes Yes; m even 2n/k quasi - 3f

periodic
even k, k+1 Yes No Yes; m odd 4n/k* periodic 3g
even k, k+1 Yes No Yes; m even 2n/k" quas - 3h

periodic
even k, k+1 Yes No No w quasi- 3i

periodic
even n No 2n/n quasi - 33

periodic

mode classes of the pair k& and & + 1. The cases are dis-
tinguished by whether k/2 is an integer divisor of n (k/2 =
n/m, with m < n), an integer multiple of an integer divisor
of n (k =k, /2 = n/m, with m < n), or neither.
The various possibilities, and their consequences, are dis-
played in Table V and Fig. 3. In those cases where & = uk’
with k’/2 = n/m, and there is a choice of several possible
values of %/, one should always select the largest of the
possible values of &’ (smallest possible value of m).

There are also several different cases possible for de-
generate mode-class pairs for waveguides with C,, sym-
metry. The cases are distinguished by whether (k — 1) /2
is an integer divisor of n ((k — 1)/2 = n/m, withm < n),
an integer multiple of an integer divisor of n ((k — 1) =
wk’ — 1), (' —1)/2 = n/m, with m < n), or neither.
The various possibilities, and their consequences, are
displayed in Table VI and Fig. 4. In those cases where
(k—1) =uk/ — 1) with (¥ — 1)/2 = n/m, and there
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TABLE VI
MinimuM SEcTORS FOR WAVEGUIDES WITH Cry, SYMMETRY
n Mode class Degenerate If Degenerate Minimum sector Boundary Figure
P angle, radians conditions
k-1 = u(k'-1)
k4 _n  k'-1 _ 1
m Z m

even, odd 1 No w/n open circuit 4a

even, odd 2 No a/n short circuit 4b

odd k, k+1 Yes Yes 2w/ (k-1) open circuit 4c
short circuit

add k, ktl Yes No Yes 2q/ (k' -1) open circuit 4d
short circuit

odd k, k+l Yes No No xn open circuit 4de
short circuit

even k, k+1 Yes Yes; m odd 21/ (k-1) open circuit 4f
short circuit

even k, k+1 Yes Yes; m even w/ (k=1) short and 4g
open circuit

even k, k+l1 Yes No Yes; m odd 2u/ (k' -1} open circuit 4h
short carcuit

even k, k+1 Yes No Yes; m even w/(k'-1) short and 4i
open circuit

even k, k+1 Yes No No /2 short and 43
open circuit

even n+l No m/n short and 4k
open circuit

even n+2 No n/n short and 4%

open circuit

is a choice of several possible values of k', one should
always select the largest of the possible values of &’
(smallest possible value of m).

Note that while the minimum waveguide-sector angle is
the same for both mode classes of a degenerate pair, the
boundary conditions are different for each mode class of
the pair. This result for the degenerate mode classes of
waveguides with C,, symmetry contrasts with that for
waveguides with C, symmetry, where both mode classes of
a degenerate pair have the same sector boundary condi-
tions. Thus, in the case of waveguides with C,, symmetry,
the use of the minimum waveguide sector for analyzing
the modes in a degenerate mode class leads to an important
benefit in addition to minimizing the waveguide area that
is necessary to be included in the analysis. By using the
minimum waveguide sector with its appropriate boundary
conditions, the degeneracy of the modes is lifted; there-
fore, in any numerical caleulations each mode can be
treated as a nondegenerate mode.

Two examples will be examined briefly to illustrate the
application of symmetry analysis to specific structures.
First, consider the hollow condueting pipe of square cross
section with four dielectric slabs located so as to produce
a structure with Cy symmetry, Fig. 5(a). From Table I,
this waveguide has a total of four mode classes. Mode
classes 1 and 4 have nondegenerate modes, while mode
classes 2 and 3 form a pair with mutually degenerate modes.
Using Table V and Fig. 3, one finds that the minimum
waveguide sectors which are necessary and sufficient to
determine the modal electromagnetic fields are those
shown in Fig. 5. Fig. 5(b) and 5(d) show the minimum
sectors for mode classes 1 and 4, respectively, while Fig.
5(c) shows the minimum sector for the pair of degencrate
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Fig. 5. Minimum waveguide sectors for a waveguide with C, sym-
metry. (a) Waveguide with €4 symmetry. (b) First mode class
(nondegenerate). (¢) Second and third mode classes (degenerate
pair). (d) Fourth mode class (nondegenerate). Dotted lines in-
dicate periodic boundary conditions; dot—dash lines indicate quasi-
periodiec boundary conditions.

mode classes (2 and 3). The particular sectors shown are
not unique; other sectors with the same angle and bound-
ary conditions could have been chosen instead.

The open-boundary waveguide of Fig. 6(a) has seven
dielectric rods (or fibers) of equal diameter arranged in
a close-packed structure with C;, symmetry. From Table
11, this waveguide has a total of eight mode classes. Mode
classes 1, 2, 7, and 8 are nondegenerate, while mode
classes 3 and 4, 5 and 6, are two pairs, with each pair
having mutually degenerate modes. Using Table VI
and Fig. 4, one finds that the minimum sectors which are
necessary and sufficient to determine the modal electro-
magnetic fields of these mode classes are those shown in
Fig. 6. Fig. 6(b), (¢), (f), and (g) show the minimum sec-
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Fig. 6. Minimum waveguide sectors for a waveguide with Cs,
symmetry. (a) Waveguide with Cs, symmetry. (b) First mode
class (nondegenerate). (¢) Second mode class (nondegenerate).
(d) Third and fourth mode classes (degenerate pair). (e) Fifth and
sixth mode classes (degenerate pair). (f) Seventh mode class (non-
degenerate). (g) Eighth mode class (nondegenerate). Solid lines
indicate short-circuit boundary conditions; dashed lines indicate
open-circuit boundary conditions.

tors for mode classes 1, 2, 7, and 8, respectively. Fig. 6(d)
shows the minimum sectors for the mode class pair 3 and
4, and Fig. 6(e) for the mode class pair 5 and 6.

VI. NONSPATIAL SYMMETRY

In Section IIT there was a brief reference to nonspatial
symmetries which may influence the modal characteristics
of a waveguide. An important example of such a non-
spatial symmetry for waveguides is ‘“frequency-reversal”
symmetry [I1I-V]. This symmetry is a consequence of the
requirement that e (—w) = e(w) and p*(—w) = p(o)
for real w. This additional symmetry operation has no
effect on the modal characteristics of waveguides with
Cy. symmetry. However, this symmetry operation does
play an important role in the modal characteristics of
waveguides with C, symmetry. Without the inclusion of
this symmetry operation, all of the mode classes of wave-
guides with C,. symmetry would be nondegenerate; the
occurrence of degenerate pairs of mode classes for these
waveguides depends on the presence of the frequency-
reversal symmetry operation. All of the results given for
waveguides with C, symmetry in the previous sections in-
clude its influence.

A second example of a nonspatial symmetry is one
which occurs only for homogeneous waveguides with per-
fectly conducting boundaries which are either square,
rectangular, or circular (see Section III). In this.case the
additional symmetry depends on the special geometry of
these waveguides (note that homogeneous waveguides
with rectangular and elliptical boundaries belong to the
same symmetry group, Cs., but their geometries are dif-
ferent). For homogeneous waveguides with square or
rectangular walls, the transverse dependence of the axial
eleetric field for the £ modes can be written as the product
of two trigonometric functions; for example,

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, MAY 1975

E.(z,y) = Aunsin (mrz/a) sin (nwy/b)

with m,n > 1, if the waveguide width and height are a
and b, respectively. By applying the differential operator
d/0x d/0y to this field, one obtains a function B,
cos (mwrz/a) cos (nwy/b), which is characteristic of the
axial magnetic field of the H modes of the waveguide.
This operator reflects a geometric symmetry of these wave-
guides which produces degeneracies between the E and H
modes in addition to those tabulated in Table II. A
similar geometry-induced symmetry oceurs for homo-
geneous waveguides with perfectly conducting circular
walls. In this case, additional degeneracies are produced
between the Ey, and H,, modes; this result applies to
hollow circular waveguides and coaxial circular wave-
guides.

It is believed that these three cases of homogeneous
waveguides with square, rectangular, or circular walls
which are perfectly conducting, are the only ones of prac-
tical interest which show additional geometry-induced
mode degeneracies. Homogeneous waveguides with per-
fectly conducting walls whose cross sections are other than
square, rectangular, or circular will not show geometry-
induced mode degeneracies, nor will any inhomogeneous
waveguide, regardless of the boundary geometry. Since
the modal characteristics of homogeneous waveguides with
square, rectangular, and circular walls are well established
and discussed in many textbooks, there is no point in
applying the symmetry analysis described in this paper
to such waveguides. Therefore, their exclusion here is not
a significant restriction on this symmetry analysis.

VII. DISCUSSION

Symmetry analysis provides exaect information concern-
ing the following characteristies of the modes of uniform
waveguides: the classification of the modes into mode
classes; the possible degeneracies of the modes; the azi-
muthal symmetries of the modal electromagnetic fields
for each mode class; and the minimum waveguide sectors
which are necessary and sufficient to completely determine
the modes in each mode elass. The results obtained here
are applicable to waveguides which may be transversely
inhomogeneous, but whose media are isotropic and piece-
wise homogeneous. The waveguide may be lossy or loss-
less and have either an open or closed boundary. Because
all of the uniform waveguides considered in this paper are
included in the two general symmetry families, C, and
Chro it has been possible to tabulate the results for all
possible cases.

It should be clear that symmetry analysis cannot pro-
vide complete information concerning all of the modal
characteristics of uniform waveguides. For example, it
can provide no direct information concerning the ordering
of the waveguide modes based on the cutoff frequencies.
In addition, the results are exact. That means, for example,
that symmetry analysis states that modes are either non-
degenerate or are degenerate. It cannot indicate when
modes are ‘““almost” degenerate.



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.

In order to exploit symmetry analysis fully, one must
use ‘“‘common sense’” in applying it to particular strue-
tures. For example, suppose the waveguide under con-
sideration has a particular symmetry type, but its cross
section is such that it “almost” has a higher symmetry
type. This waveguide may well have mode classes which
are nearly degenerate, and one would be advised to study
the implications of both symmetry types to predict the
modal characteristics the structure would exhibit. Actually,
a deeper exploration of symmetry analysis can indicate
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how the degeneracies of modes are split when the sym-
metry is “lowered;” this would require some knowledge of
group representation theory and is not considered here.
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Characteristics of Uniform

Waveguides — |I: Theory

PAUL R. McISAAC, MEMBER, IEEE

Abstract—The application of symmetry analysis to uniform wave-
guides is discussed. Symmetry analysis provides exact information
concerning mode classification, mode degenerdcy, modal electro-
magnetic-field symmetries, and the minithum waveguide sectors
which completely- determine the modes in each mode class. This
paper provides a summary of the development that leads to the re-
sults concerning symmetry-induced modal characteristics of uni-
form waveguides discussed in the previous paper. Some of the con-
cepts of group theory are introduced, including the irreducible repre-
sentations of symmetry groups. The use of the irreducible repre-
sentations to determine the mode classes and their degeneracies is
described. The projection operators belonging to the irreducible
representations are introduced and their application to determining
the azimuthal symmetry of the modal fields is explained. The mini-
mum waveguide sectors for the mode classes are obtained from the
azimuthal symmetry of the modal fields.

I. INTRODUCTION

HE PURPOSE of this paper is to provide a summary of

the development that leads to the results concerning
the symmetry-induced modal characteristics of uniform
waveguides discussed in the previous paper. These results
are based on group theory and, in particular, on the theory
of group representations. There have been many applica-
tions of group theory to various branches of physics and
chemistry, and the literature describing these applications
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is copious. However, there have been few applications of
group theory to the field of microwaves. One exception is
symmetrical waveguide junctions which have been investi-
gated by Montgomery et al. [ 1], Kerns [2], and Auld [3].
A few papers have been published which explored the con-
sequerices of symmetry in periodic waveguides. Two recent
publications are [4] and [5]; the second paper employs
group-theoretic methods. There has been little attention
given, however, to exploiting the role symmetry plays in
determining the modal characteristics of uniform wave-
guides.

A coherent cxposition of the development of the com-
plete theory required for the symmetry analysis of uniform
waveguides starting from the basic concepts of group
theory is not feasible in the few pages appropriate to a
journal paper, and this is not attempted here. Instead,
the relevant results from group theory will be cited, and
3 brief indication given how these lead to the results pre-
sented for uniform waveguides in the previous paper
(hereafter referred to as [17). This paper is not intended to
enable a reader unfamiliar with group theory to attain a
working knowledge of it as a technique for application to
microwave analysis. However, it is hoped that these
papers may provide a glimpse of the power of this techni-
que and motivate some readers to explore it. Three of the
many excellent books on the application of group theory
to various branches of physics and chemistry are [61-[8].
To provide the maximum assistance to any interested



